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FOREWORD 
 

The Applied Diamond Conference was established in 1991. During its first stage, emphasis was put on 
promoting practical applications and discussing the sciences and technologies associated with diamond and related 
superhard materials. In its second stage, advances in novel carbon materials and nanostructures such as fullerenes 
and nanotubes were explored. Momentum grew when the diamond and frontier carbon technology community 
convinced the Japanese government (then the Ministry of International Trade and Ministry) to sponsor the diamond 
and frontier carbon technology project (known as the Industrial Science and Technology Frontier Program). As a 
result, the International Conference on Frontier Carbon Technology (FCT) was established and the two conferences 
were held jointly at the Fifth Applied Diamond Conference (ADC/FCT �99) in Tsukuba, Japan, in 1999. The 
Industrial Science and Technology Frontier Program is being continued in a more focused way, this year 
emphasizing nanotubes and their commercialization.  

These are the Proceedings of the Seventh Applied Diamond Conference/Third Frontier Carbon Technology 
Joint Conference hosted and supported by the Nippon Institute of Technology and the National Institute of Advanced 
Industrial Science and Technology from August 18 to 21, 2003, in Tsukuba, Japan. The conference received 178 
papers from 18 countries: 77 from Japan, 24 from China (including 7 from Hong Kong), 17 from the United States, 
14 from Russia, 11 from Germany, 11 from the United Kingdom, 4 from France, 4 from Singapore, 3 from Ukraine, 
3 from South Korea, 2 from Brazil, 2 from Taiwan, and 1 each from Armenia, Canada, India, Italy, Sweden, and 
Switzerland. 

We thank all the sponsors, invited speakers, contributors, attendees, committee members, and session chairs 
who have made this conference a success. 
 
 
M. Murakawa K. Miyoshi                                    
Organizing Committee, Chairperson Program Committee, Chairperson 
  Organizing Committee, Co-chairperson 

  
Y. Koga L. Shäfer 
Organizing Committee, Co-chairperson Program Committee, Co-chairperson 
Program Committee, Co-chairperson 
  Y. Tzeng 
  Program Committee, Co-chairperson                                 
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ABSTRACT

Carbon-nitrogen (CN) nanofibers have been formed in High Isostatic Pressure (HIP) apparatus in 1:1
nitrogen-argon gas mixture at 75 GPa using graphite electrical heater. Bamboo-like, beads-like, corrugated and
spring-like nanofibers with the diameter of about 100-150 nm and the length over 10 µm have been found in a
deposit with a low content of amorphous carbon. The nitrogen content up to 8.5 % was found in fibers by EELS
analysis. The CN nanofibers were printed on cathode plate and the diode-type flat vacuum lamp with 1 inch
diagonal was assembled for the field emission study with the gap between anode and cathode varying in the range
of 300 – 900 µm. The turn-on fields were about 1.3 V/µm, the current density was 0.05 mA/cm2 at 1.35 V/µm. The
time reliability and light emission test were carried out for above 100 hours. We suggest that CN nanofibers can be
applied to the high brightness flat lamp because of low turn-on field and time reliability.

Keywords: carbon-nitrogen naofibers, high isostatic pressure apparatus, structure, field emission.

INTRODUCTION

The possibility of utilization of carbon nanostructures as electron emitters attracts growing scientific interest
(refs. 1to 6). Carbon nanotubes (CNT) and other nanostructures are capable of emitting high currents (up to 1
A/cm2) at low fields (~ 5 V/ìm). They already used for producing some cold electron emitter devices (refs. 3 to 6).
Despite pure carbon nanostructures CN, SiCN nanostructures attract considerable interest as alternative  materials
for cold emitters (refs. 7-9). R. Kurt et al. (ref. 7) investigated emissive properties of decorated C/N nanotubes.
Plasma enhanced hot filament chemical vapor deposition (PE-HF-CVD) combined with micro-contact printing of
catalysts was performed in order to deposit patterned films of nitrogenated carbon (C/N) nanotubes. Each tube was
not straight but twisted. The length of a single tube was in the range of 10 - 50 ìm,  the diameter 50 - 1000 nm.
Nitrogen concentration in C/N nanotubes was found to be 4.3 %. On catalytic samples the lowest onset, turn – on
and threshold fields required to extract a current density of 10 nA/cm2, 10 µA/cm2 and 10 mA/cm2, respectively,
were Ei= 3.8 V/ìm, Eto= 4.7 V/ìm and Ethr= 7.4 V/ìm. In the case of autocatalytic growth very similar results were
obtained, except Ethr= 11.5 V/ìm. Regarding their field emission properties, C/N nanotubes compare quite well
with films of pure carbon nanotubes. For arrays of C/N nanotubes thinner than 50 nm an onset field below 3 V/ìm
was observed.

The influence of C-N bonds concentration on the emission properties of films was investigated in reference 8.
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The following conclusions have been drawn out. High concentration of tetrahedral C-N bonds lowers the threshold
voltage for electron emission. The lower the percentage of double C=N bonds, the higher the emittance.

The carbon-nitride nanobells were obtained by G.Y. Zhang et al (ref. 9) with nitrogen content of about 2%. The
onset voltage was about 1 V/ ìm and the threshold field about 10 V/ìm. They point out that according to ab initio
calculations, such nanostructures have very high electronic density of states at the open edges.

A method of high isostatic pressure (HIP) growth of carbon nanostructures was designed first by Blank et al
(refs. 10,11) and nitrogen concentration up to 13 % have been obtained (ref. 11). Elevated gas pressure promotes
desirable chemical reactions due to elevation of chemical potential and diffusion coefficients. This method
provides wider range of morphologies of nanostructures and higher nitrogen concentration in C-N nanotubes than
CVD techniques.

In this article we investigated structure, nitrogen content and emissive properties of CN nanostructures
obtained by HIP apparatus and found that they are competitive with those of pure carbon once for the first time.

EXPERIMENTAL

Nitrogen containing carbon nanostructures were formed in the High Isostatic Pressure (HIP) unit. The block
diagram of the unit is shown in Fig. 1. In our experiments we used the HIP apparatus, designed for the maximum
pressure value of 350 MPa. Its inner dimensions  for mounting heater and screens are the following: diameter 40
mm, height 125 mm. Check valve (6) was  used for the better stability of pressure during experiment. High gas
pressure was created using the one-stage piston gas compressor (2).

Figure 1.  The block diagram of High Isostatic Pressure (HIP) unit (left) and the heating unit (right).
In left : 1 - High Isostatic Pressure (HIP) Apparatus; 2 - High pressure Gas Compressor; 3 - Gas-cylinder (or

cylinders); 4 - Shutoff valve; 5 - Manometer; 6 - Check valve.
In right: 1 –  carbon resistive heater; 2 –  copper contacts 3 –  supporting ring  (graphite); 4 –  upper screen; 5 –

side screen (graphite); 6 – thermocouple;A, B, C – carbon nanofibers deposition zones.

 We used carbon heater as the carbon source. The shape of the graphite heater and heat shielding are shown in
Fig. 1(right). The heat shielding is manufactured from graphite, it contains ring 3, plug 4 and cylinder 5. The
heating zone with the thickness equal to 0.7 mm was made in the middle part of the heater 1. Carbon deposit was
taken from the top part of the heater (zone A). The thermocouple type A insulated by corundum - straw 7 has been
used for measurement of temperature. Details of experimental procedure have been presented in (ref. 10). The
argon – nitrogen mixture with equal content of gases was prepared in the mixture unit (3) in Fig.1(left). The
gaseous pressure was 75 MPa, duration of synthesis 40 min, temperature of the hot zone above 1400oC. Carbon
evaporation was carried out by direct resistive electrical heating and improved by presence of nitrogen. We
suppose that nitrogen improves carbon evaporating due to formation of C-N clusters on the heater surface and
next transfer them into gas phase. Carbon deposit was investigated by transmission (TEM) and scanning
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transmission electron (STEM) microscopy, using JEM-200CX, CM20 Philips TEM, VG 601 UX STEM and
Hitachi S-4300.

The CN nanofibers were printed on the active area of cathode plate and then the diode-type flat lamp with 1
inch diagonal emitting area was assembled for the field emission study (Fig.2). The cathode electrode lines were
formed with metal Cr on cathode glass plate. The green phosphor was printed on ITO coated anode glass. The field
emission measurements were performed with the gap between anode and cathode varying in the range of 300 –
900 µm in vacuum chamber at a pressure of 10-6 Torr using F.u.G. Elektronik DC Power Supply. The sample
temperature during the measurement was 300K.

Figure 2. The geometrical structure of vacuum packaged CN nanofibers flat lamp:
side view (left) and top view (right) .

    The green phosphor was printed and the glass frit was dispensed on anode glass plate. And then, it was put
on the cathode glass plate with exhausting tube followed by heating to 420 C to melt a glass frit in N2 ambient.  A
sheet type getter (ST122) was inserted to panel through the tube, as shown in Figure 2. The panel was connected to
tip-off system followed by pumping to 10-6 Torr.  

STRUCTURE

Figure 3 shows SEM images of CN nanofibers formed by HIP. Figure 3a shows a cluster and figure 3b has
higher magnification. The CN nanofibers were grown in random with the diameter of about 100-150 nm and the
length over 10 µm. Increase of the nitrogen pressure caused increase of the carbon deposit and an appearance of
variety of different structures. It can be explained by active gas convection, which caused more active mass
transport and fluctuations of temperature. We found bamboo-like nanotubes with equidistant diaphragms, wrinkled
bead necklace-like (BdL) tubes with thin walls, nanotubes with thin, not completely formed walls, like corrugated
nanofibers (Cor-fibers) and spring-like periodical structure. The examples are shown in Figure 4. All these
structures are characterised by curved carbon layers as a result of the presence of included nitrogen atoms. EELS
investigations showed presence of nitrogen in tubes. The peak at 401ev of EELS-spectra corresponds to trivalent
nitrogen atoms replacing graphite ones in a hexagonal lattice (Fig. 5a). The average nitrogen concentration was
calculated to be about 3-4%. The value of nitrogen concentration in BdL tubes was found up to 8.5%.

Although the role of nitrogen for structure formation as well as for modification of material properties is not
completely clear, we believe that low value of electron emission onset field found for our nanofibers, can be
explained by peculiarities of their structures caused by the presence of nitrogen. At conditions of high argon
pressure in HIP apparatus mach smaller amount of nanostructure deposit have been formed and that was mainly
cylindrical nanotubes, while relatively big amount of nanofibers of various different configurations were formed
at the same pressure-temperature conditions at nitrogen atmosphere. The curved intersected inner C-N layers
forming a wavy net-like structure have been observed inside nanofibers (ref. 12). Analogous nanostructure was
found in bamboo-like fibres, bead necklace-like fibres and net-fibres with a more complex structure consisting of
intersecting graphene layers inside the fibre. The reason for an appearance of curved intersected graphene layers
inside the fibre is the presence of nitrogen atoms in graphene layers. It is assumed that nitrogen effectively
substitute carbon atoms in the graphitic lattice, resulting in bending of fringes (ref. 13).
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a)                                                                            b)

Figure  3.  SEM image of carbon-nitrogen (CN)  nanofibers formed by HIP;
(a)  magnification ×1.2k ;  (b)  magnification ×5k.

Figure 4.  HRTEM image of corrugated  (left) and spring-like (right) nanofibers.

a)        b)

Figure 5.  EELS (a) and IR spectra (b) of CN deposit obtained in HIP unit
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The corrugated structure was explained in (ref. 14) by formation of pyridine-like bonds between nitrogen and
carbon atoms.  These bonds are characteristic mostly for edges of graphene layers. The availability of interstitial
nitrogen into the graphite layers leads to the distortion and disruption of lattice.  Even the small difference
between C-C and C-N bond lengths (0.1422 and 0.1429 nm, respectively (ref. 15) causes large inner tensions in
the growing layer, giving rise to elastic deformations and the bending of layers. Formation of fullerene-like
structures can be considered as another reason for explanation of the structure of the inner layers (ref. 16). The C-
N interaction may take place in a form of substitution of carbon atoms by nitrogen ones in (002) graphite planes,
but to a greater extent it can create interlayer bonds, cause defects and formation of sp3-bonds. IR-spectroscopy
investigations showed that only single C-N bonds present in the nanostructures synthesized (Fig. 5b). The band at
1100 usually is attributed to C-N single bonds vibration frequencies (ref. 17). It is assumed, that namely single C-
N bonds are favourable for field emission properties (ref. 8).

FIELD EMISSION

Figure 6  shows the field emission curves of the CN nanofibers and the corresponding Fowler-Nordheim
curves.  Turn on field at the spacer gap of 300, 500, 700 and 900 µm was measured 1.56 V/µm, 1.48 V/µm, 1.2
V/µm and 1.44 V/µm, respectively.  The emission uniformity in the active area was quite good.

a)                                                                          b)

Figure 6. Field emission curves (a) and the corresponding Fowler-Nordheim plot (b) of CN nanofibers.

It is assumed in various studies of the field emission of carbon nanotubes, that electrons are usually emitted
from their top tips (ref. 18). But in the case of CN nanofibers, we suppose that besides top tips, electrons can be
emitted from nanofiber sides. Substitution of carbon atoms with nitrogen ones in graphene sheet causes its
corrugation and appearance of sp3 carbon sites, favourable for field emission due to the negative electron affinity.
Besides that nitrogen atoms may strongly affect on the electron structure of the fibers and supposedly this may
also improve emission properties.   The Fowler–Nordheim (FN) theory is used to describe field emission
behaviour of metallic materials at high applied electric field. According to the theory the plot of log (I/V2) vs. 1/V,
is expected to be a straight line. However, our FN plots in figure 6 show distinct non-linearity. This deviation from
FN theory in field emission probably may be attributed to the geometric structure of the emitters, effect of space
charge in the chamber and to a change in the contact resistance between CN nanofiber emitters and the substrate
(ref.19).

CONCLUSION

The CN nanofibers were formed by HIP process for the first time. From the field emission measurements CN
nanofibers show an excellent characteristics of emitter, better than carbon nanofibers and other known carbon-
nitrogen structures. The CN nanofibers flat lamp provides high brightness and uniformity of the light beam. The
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CN flat lamp can be applied to automotive, avionics industries, high performance back-lights for liquid crystal
displays, view box and so on.
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ABSTRACT   
Homoepitaxial growth on <111> oriented synthetic type Ib surfaces has been so far the most successful way to an 

efficient n-type doping of diamond by using phosphorus. However, such epilayers often present stress-relieving 
macroscopical cracks, which hamper their application as p-n diodes and other electronic devices.  

 
High-resolution confocal micro-Raman spectroscopy results described in this work show that for this particular 

growth direction the zone-centre phonon peak of the phosphorus-doped epilayers occurs a few cm-1 below the peak of 
the relaxed diamond, indicating a strong tensile strain present in undoped films as well.  Surface frequency mappings 
indicate that this strain is locally relaxed near the cracks that originate from the film/substrate interface. In-depth 
frequency cross sections show that close to this interface the substrate is under compressive strain and has a perturbed 
Raman signature under the cracks. Correlated maps of the spectral features associated to specific defects such as 
disordered carbon phases or nitrogen and silicon incorporation, give some evidences for the origin of the tensile strain 
in the layers.   

 
This study is performed on n-type phosphorus-doped films grown by CVD in three different laboratories. 

Comparison of Raman data allows us to discuss the influence on the residual internal strain of various deposition 
parameters such as the substrate surface quality, the gas pressure, the growth temperature and the purity of the active 
gases. 

 
Keywords: Diamond growth and characterization, Homoepitaxial epilayers, Strain, Raman spectroscopy  
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homoepitaxial {111}
diamond

Room temperature Raman spectra obtained under tight confocal conditions. a: undoped epilayer, 1.4 µm thick, 
b: undoped epilayer, 2.8 µm thick, c: undoped epilayer, 5.6 µm thick, d: phosphorus-doped layer, 8 µm thick. 
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